O2 Grain Pulse

Monitoring approach with satellite data

O2 Grain Pulse uses advanced satellite data, including Copernicus satellites, to provide a comprehensive picture of agricultural productivity.

A New Approach to Crop Monitoring

At the heart of O2 Pulse lies its focus on Total Above Ground Productivity (TAGP), a metric representing the total biomass of a crop’s above-ground components. TAGP, measured in kilograms or tons per hectare, serves as a reliable indicator of crop growth and yield potential.

What sets O2 Pulse apart is its ability to deliver this information at both global and localized scales. The platform features grids at two resolutions: 12.5 km x 12.5 km and 300 m x 300 m. This dual resolution enables users to analyze productivity trends on a regional or even field-specific level.

Practical Features for Real-World Applications

O2 Pulse provides users with a range of actionable data points. For grids measuring 300 m x 300 m, the platform not only offers TAGP estimates but also includes:

  • Field area measurements
  • Predicted harvest quantities
  • Estimated market prices for wheat and flour

Data is updated daily, ensuring that users have access to the most current information. This capability makes the platform a valuable resource for tasks such as forecasting commodity prices, analyzing stock market trends, and evaluating the performance of companies involved in milling, food production, or dining.

Open Access and Global Coverage

One of the most striking aspects of O2 Pulse is its accessibility. The service is offered free of charge, covering approximately 30,000 grids at the 12.5 km resolution and 30 million grids at the 300 m resolution. With such extensive global coverage, users can compare productivity across regions and even cross borders with confidence, thanks to the platform’s consistent calculation methodology.

Looking Ahead: Generative AI and Beyond

Otani & Co. is also exploring ways to enhance the platform with cutting-edge technologies. Plans include integrating generative AI tools that could generate detailed reports from imported datasets and satellite imagery. Such enhancements aim to further streamline decision-making processes for industry professionals.

Empowering Decision-Makers

O2 Pulse’s comprehensive and user-friendly approach positions it as a game-changer for agricultural analysis. By providing reliable, up-to-date data and powerful analytical tools, the platform empowers users to make informed decisions in an increasingly complex global market.

Use O2 Grain Pulse

O2 Grain Pulse – Spring Wheat

O2 Grain Pulse – JP

衛星データによるモニタリングのアプローチ

O2 Grain Pulseは、コペルニクス衛星を含む高度な衛星データを活用して農業生産性を包括的に把握するものです。

Total Above Ground Productivity

O2 Grain Pulseは、作物の地上部分の総生物量を示す指標である総地上生産量(TAGP:Total Above Ground Productivity)への注目です。TAGPは、1ヘクタールあたりのキログラムまたはトンで表され、作物の成長や収穫量の可能性を評価する信頼できる指標として機能します。

O2 Grain Pulseのユニークな点は、この情報をグローバル規模と地域規模の両方で提供できることです。同プラットフォームは、12.5km x 12.5kmと300m x 300mの2種類の解像度を持つグリッドを特徴としており、地域レベルや圃場レベルでの生産性トレンドを分析することが可能です。

現実世界の用途に対応する実用的な機能

O2 Grain Pulseは、ユーザーに幅広い実用的なデータポイントを提供します。300m x 300mグリッドでは、TAGP推定値に加え、以下の情報も利用できます。

  • 圃場面積の測定
  • 予測収穫量
  • 小麦および小麦粉の市場価格の推定値

データは毎日更新されるため、最新の情報にアクセスできます。この機能により、コモディティ価格の予測、株式市場動向の分析(例:日経225)、製粉、食品生産、外食などの分野における企業業績の評価に役立ちます。

オープンアクセスとグローバルなカバレッジ

O2 Grain Pulseの際立った特徴の一つは、そのアクセスのしやすさです。このサービスは無料で提供され、12.5km解像度のグリッド約30,000箇所と300m解像度のグリッド約3,000万箇所をカバーしています。この広範なグローバルカバレッジにより、一貫した計算方法を使用しているため、ユーザーは地域や国を越えて生産性を比較することが可能です。

未来展望:生成AIとさらなる発展

私たちは、最先端技術を活用してプラットフォームを強化する方法も模索しています。計画には、インポートされたデータセットや衛星画像を基に詳細なレポートを生成する生成AIツールの統合が含まれています。このような強化により、業界専門家の意思決定プロセスをさらに効率化することを目指しています。

意思決定者を支援

O2 Grain Pulseの包括的で使いやすいアプローチは、農業分析のゲームチェンジャーとしての地位を確立しています。信頼性が高く、最新のデータと強力な分析ツールを提供することで、このプラットフォームは、ますます複雑化するグローバル市場で情報に基づいた意思決定を可能にします。

O2 Grain Pulseを使う

O2 Grain Pulse – Spring Wheat

独自のインデックスを作成する方法: Googleスプレッドシートを活用した簡単ガイド

本記事では、地域の監視に役立つ独自のインデックスを作成する方法をご紹介します。ビデオによる説明は以下よりご覧いただけます、

メール登録

はじめに、Googleアカウントを用意してください。アカウントを作成またはログインしたら、登録用ウェブサイトにアクセスしサインアップしてください

図1: メール登録フォームを送信

サインアップが完了すると、Googleスプレッドシートへのリンクが提供されます。このスプレッドシートは、インデックスの設定に使用します。

Googleスプレッドシートの編集

スプレッドシートをコピーする

まず、Googleスプレッドシートをコピーします。リンクにアクセスして、「コピーを作成」ボタンをクリックしてください。

図2: 「コピーを作成」ボタンをクリック

シートから地域を抽出する

次に、QUERY関数を使用してシートからデータを抽出します。この関数を使用すると、スプレッドシート内のデータをフィルタリングおよびソートできます。

図3: QUERY関数を使用してインデックス用のデータを抽出(例: 「Australia」と「Queensland」でフィルタリング)

例えば、以下のようなQUERY関数を使用します:

SELECT C, D WHERE B = 'Australia' AND C LIKE '%Queensland%'

この場合、以下の結果が得られます:

図4: QUERY関数の結果

スプレッドシートを公開する

ウェブに公開

スプレッドシートをCSV形式でウェブに公開します。

図5: ウェブに公開。形式はCSV

公開後、以下のようなURLが提供されます:

https://docs.google.com/spreadsheets/d/e/2PACX-xxxxxxxx/pub?gid=16********&single=true&output=csv

ここで:

  • 2PACX-xxxxxxxx はスプレッドシートID
  • 16******** はシートIDです。
図6: 共有可能なURLが提供されます

独自のインデックスURLを作成する

最後に、以下の形式に基づいて独自のインデックスURLを作成します:

https://otani.co/crops/spring-wheat/NDVI/<インデックス名>/?sid=<スプレッドシートID>&gid=<シートID>

例えば、Spring Wheat / NDVIインデックスの名前が**「QLD, AU」**で、スプレッドシートIDが2PACX-xxxxxxxx、シートIDが16********の場合、URLは次のようになります

https://otani.co/crops/spring-wheat/NDVI/QLD,AU/?sid=2PACX-xxxxxxxx&gid=16********  

これにより、同じデータに異なる名前でアクセスできます(例: QLD, AUまたはQueensland, Australia)。

結論

以上で、Googleスプレッドシートを使った独自のインデックス作成方法の説明を終わります。このガイドが役に立てば幸いです。ご不明点があれば、お気軽にお問い合わせください

How to Build Your Own Index (Dashboard): A Step-by-Step Guide Using Google Spreadsheets

In this post, we will guide you through creating your own index to monitor regions of interest effectively. A link to youtube video is provided below.

Email registration

To get started, you need a Google account. Once you’ve created or logged into your account, visit the registration website and sign up for the index.

Figure 1: Submit the email registration form

After signing up, you will receive a link to a Google Spreadsheet. This spreadsheet will serve as your configuration.

Edit a google spreadsheet

Copy the Google Spreadsheet

First, make a copy of the Google Spreadsheet. Visit the provided link and click the “Make a copy” button.

Figure 2 : Click “Make a copy” button

Extract Regions from the Sheet

Next, extract regions from the sheet using the QUERY function. The QUERY function enables you to filter and sort data in the spreadsheet.

Figure 3: Extract data for your index using the QUERY function (e.g., filtering data for “Australia” and “Queensland”)

For example, a QUERY function like this:

SELECT C, D WHERE B = 'Australia' AND C LIKE '%Queensland%'

might return:

Figure 4: Result of the QUERY function

Publishing Your Spreadsheet

Publish to the Web

Publish your spreadsheet to the web in CSV format.

Figure 5: Publish to the web. Format: CSV

Once published, you will receive a URL like this:

https://docs.google.com/spreadsheets/d/e/2PACX-xxxxxxxx/pub?gid=16********&single=true&output=csv

Here:

  • 2PACX-xxxxxxxx is the spreadsheet ID.
  • 16******** is the sheet ID.
Figure 6: Sharable URL provided

Developing Your Own Index URL

Finally, create a URL for your custom index using the following format:

https://otani.co/crops/spring-wheat/NDVI/<your own index name>/?sid=<spreadsheet id>&gid=<sheet id>

For example, if your Spring Wheat / NDVI index is named “QLD, AU“, with the spreadsheet ID 2PACX-xxxxxxxx and sheet ID 16********, the URL would be:

https://otani.co/crops/spring-wheat/NDVI/QLD, AU/?sid=2PACX-xxxxxxxx&gid=16********

This allows you to access the same data with different names, such as QLD, AU and Queensland, Australia.

Conclusion

That’s it! You’ve successfully built your own index using a Google Spreadsheet. We hope this guide has been helpful. For any questions, please feel free to contact us.

春小麦植生インデックス

春小麦植生インデックス

春小麦植生指数は、正規化差分植生指数(NDVI)を用いて春小麦の生産性をモニタリングし、潜在的な収穫量を示すために設計された10日間隔の指数です。本インデックスは、春小麦の地上部総生産量(TAGP)を観測した地域を対象としています。データは0.1°×0.1°(緯度経度)のグリッドで表示され、全ての値はNDVIの平均値を表します。選択された地域のインデックスは指定されたページで提供されています(URLは本ページ下部に記載)。

グリッド

すべてのグリッドはコペルニクスから取得したTAGPデータに基づいており北半球と南半球にまたがっています。2020年7月以降の春小麦のTAGP(Total Above Ground Production)観測データを用いて30,000以上のグリッドを生成しています。各グリッドのサイズは0.1°×0.1°で、およそ12.5km×12.5kmです。各グリッド内には約1,000個のNDVIグリッドが含まれます。NDVIグリッドのサイズは500 m x 500 mです。

インデックス

春小麦植生インデックスは特定の日付におけるTAGPグリッド内のNDVIの平均値です。この平均NDVI値を春小麦の地上部総生産性の指標と考えます。各平均NDVI値は、2020年7月から2024年10月まで観測されたTAGPグリッドに基づいて計算されています。なお、インデックスは2020年7月からデータを提供しています。

以下の図 1 に示すように、春小麦の生育期には、NDVI の平均値は増加する傾向にあり、地上部の総生産性と相関しています。この散布図は、TAGPとNDVIを緯度と経度でグループ化し、TAGPの値を対数(自然対数)に変換したものでです。それぞれの地域でTAGP値が最大値から4番目の値より小さい期間を生育ステージとしています。相関型の違いはより考慮する必要がありますが、平均NDVI値は春小麦の収穫量を示す指標として役立ちます。

Figure 1 : Scatter plot of logged TAGP vs NDVI mean during the growing stage.

Indices for Selected Regions

各地域の指標は、以下のようなページで提供されています。

各ページの左上(または一番上)に表示されている値は、そのページに表示されているエリア全体のインデックスを集計したものです。この値は、サブエリアの個々のインデックス値の平均ではなく、エリア内のすべてのNDVIグリッドの平均NDVIとして計算しています。

例えば、以下のラ・パンパ(アルゼンチン)のページでは、全 86 グリッドの平均値は 0.38(2024年11月1日現在)と表示されています。

Figure 2 : La Pampa, Argentina

この値は、ラ・パンパの86,000以上のNDVIグリッドポイントに基づいており、個別に記載されている86のサブエリア指数(例えば、0.36、0.33、0.41)ではありません。

ダウンロード

インデックスデータは、エリアページからCSV、PNG、SVG形式でダウンロードできます。

引用

このデータを引用または利用する場合は、以下のAttributionまたはhtmlコードをお使いください。

Attribution

Otani & Co., Inc. Spring Wheat / NDVI Index. https://otani.co/docs/crop-spring-wheat-ndvi/

HTML

<a target="_blank" href="https://otani.co/docs/crop-spring-wheat-ndvi/">Spring Wheat / NDVI Index.</a>

Data Source

European Union’s Copernicus Land Monitoring Service information; NDVI and Spring Wheat Total Above Ground Producton


データやアプリケーションのカスタマイズについては、このページのフォームを使用してお問い合わせください。

Spring Wheat / NDVI

Spring Wheat / NDVI

The Spring Wheat / NDVI index is a 10-day interval index designed to monitor spring wheat productivity and estimate potential harvests using the Normalized Difference Vegetation Index (NDVI). The index covers areas observed for Total Above Ground Productivity (TAGP) of spring wheat. Data is presented on grids sized 0.1° x 0.1° (latitude and longitude), with all values representing the mean NDVI values. Aggregated indices for selected areas are provided on designated pages, with URLs listed at the bottom of this page.

Grids

All grids are based on TAGP data retrieved from Copernicus, spanning the northern and southern hemispheres. Over 30,000 grids have been generated using TAGP observations of spring wheat since July 2020. Each grid measures 0.1° x 0.1°, approximately equivalent to 12.5 km x 12.5 km. Within each TAGP grid, approximately 1,000 NDVI grids are included, each measuring 300 m x 300 m. The NDVI data is also sourced from Copernicus.

Index

The Spring Wheat / NDVI index values are averages of NDVI within a given TAGP grid at specific times. Each mean NDVI value is calculated based on TAGP grids observed from July 2020 to October 2024, and the time-series data from July 2020 is provided. This average NDVI value is considered an indicator of total above-ground productivity for spring wheat.

As illustrated in the figure 1 below, during the growing stage of spring wheat, the mean value of NDVI tends to increase and correlate to total above-ground productivity. This scatter plot is developed by the process tha TAGP and NDVI are grouped by latitudes and longitude and the values of TAGP are converted into logged values (natural logarithm). The definition of the growing stage in the grouped area is the period that the TAGP value is less than the fourth value from its maximum. Although the difference of correlation types should be more in consideration, the average NDVI value serves as a straightforward and accessible indicator of spring wheat productivity.

Figure 1 : Scatter plot of logged TAGP vs NDVI mean during the growing stage.

Indices for Selected Areas

Indices for selected areas are provided on specific pages, such as:

On each page, the value displayed in the top-left (or top) position represents the aggregated index for the entire area shown on the page. This value is calculated as the mean NDVI of all NDVI grids within the area, rather than the mean of individual index values for sub-areas.

Figure 2 : La Pampa, Argentina

For instance, on the La Pampa, Argentina page, the aggregated mean for all 86 grids is shown as 0.38 (as of 1st Nov, 2024). This value is based on over 86,000 NDVI grid points in La Pampa, rather than the 86 sub-area indices listed individually (e.g., 0.36, 0.33, 0.41).

Note that the index data on selected area are free to use with the attribution or link to this page.

Data Download

The index data can be downloaded in CSV, PNG, and SVG formats from the area pages.

Citation

When citing or utilizing this index data, please include the following attribution or html code:

Attribution

Otani & Co., Inc. Spring Wheat / NDVI Index. https://otani.co/docs/crop-spring-wheat-ndvi/

HTML

<a target="_blank" href="https://otani.co/docs/crop-spring-wheat-ndvi/">Spring Wheat / NDVI Index.</a>

Data Source

European Union’s Copernicus Land Monitoring Service information; NDVI and Spring Wheat Total Above Ground Producton


For additional information, customization, or applications of the data, please contact us using the form on this page.

Mayze Data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) / Copernicus

Our data for Mayze Data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) is based on the data from Copernicus project in Europe. This page purposes to explain detailed information for the downloadable data.

Example Dataset (DVS)

Please download a free example dataset and use it in you app or analysis.

URL Expiration

All downloadable URLs expire in 90 days after your order.

Temporal Resolution and Update

The temporal resolution for this data is 10-daily. Also, the latest data is usually updated within 2-3 days after the latest Copernicus data is published.

When you see your ordered data first time, you would recognize that the data does not contain the whole data. This is NOT a bug but the data creation process has not done yet. After the order, the process begins, and then the whole data becomes accessible in several hours. In every 15 minutes, the data is revised in the direction of both the future and in the past.

Data Format

The default format is csv where no single/double quotation marks are used in the file. Also, the geojson format is available, changing the file extension in the provided url from “csv” to “geojson.” Note that the geometry of geojson format is Point.

Example (DVS)

Example on Spreadsheet.

Column Names / Property Names

NamesDescriptionPhysical unit / classesPhysical minPhysical maxDigital maxScalingOffset
timeDatetimeYYYY-MM-10 12:00:00
latLatitudeDecimal
lonLongitudeDecimal
MayzeDWSCrop phenological stage: 0 at emergence, 1.0 at flowering, 2.0 at crop maturity02
MayzeTAGPTotal above-ground production (dry matter)kg/ha
MayzeTWSOTotal weight storage organs (dry matter), e.g. grains or podskg/ha
Based on the provided information on Crop Productivity Indicators: Product User Guide and Specification (PUGS), This table is created by Otani & Co., Inc.

Further Details on Mayze Data

For further details, concerns such as satellite sensors and data accuracy, please refer the Copernicus pages and the ECMWF pages.

Crop productivity and evapotranspiration indicators from 2000 to present derived from satellite observations

Crop Productivity Indicators: Product User Guide and Specification (PUGS)

Spring wheat data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) / Copernicus

Our data for Spring wheat data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) is based on the data from Copernicus project in Europe. This page purposes to explain detailed information for the downloadable data.

Example Dataset (DVS)

Please download a free example dataset and use it in you app or analysis.

URL Expiration

All downloadable URLs expire in 90 days after your order.

Temporal Resolution and Update

The temporal resolution for this data is 10-daily. Also, the latest data is usually updated within 2-3 days after the latest Copernicus data is published.

When you see your ordered data first time, you would recognize that the data does not contain the whole data. This is NOT a bug but the data creation process has not done yet. After the order, the process begins, and then the whole data becomes accessible in several hours. In every 15 minutes, the data is revised in the direction of both the future and in the past.

Data Format

The default format is csv where no single/double quotation marks are used in the file. Also, the geojson format is available, changing the file extension in the provided url from “csv” to “geojson.” Note that the geometry of geojson format is Point.

Example (DVS)

Example on Spreadsheet.

Column Names / Property Names

NamesDescriptionPhysical unit / classesPhysical minPhysical maxDigital maxScalingOffset
timeDatetimeYYYY-MM-10 12:00:00
latLatitudeDecimal
lonLongitudeDecimal
SpringWheatDVSCrop phenological stage: 0 at emergence, 1.0 at flowering, 2.0 at crop maturity02
SpringWheatTAGPTotal above-ground production (dry matter)kg/ha
SpringWheatTWSOTotal weight storage organs (dry matter), e.g. grains or podskg/ha
Based on the provided information on Crop Productivity Indicators: Product User Guide and Specification (PUGS), This table is created by Otani & Co., Inc.

Further Details on Spring Wheat Data

For further details, concerns such as satellite sensors and data accuracy, please refer the Copernicus pages and the ECMWF pages.

Crop productivity and evapotranspiration indicators from 2000 to present derived from satellite observations

Crop Productivity Indicators: Product User Guide and Specification (PUGS)

Winter wheat data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) / Copernicus

Our data for Winter wheat data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) is based on the data from Copernicus project in Europe. This page purposes to explain detailed information for the downloadable data.

Example Dataset (DVS)

Please download a free example dataset and use it in you app or analysis.

URL Expiration

All downloadable URLs expire in 90 days after your order.

Temporal Resolution and Update

The temporal resolution for this data is 10-daily. Also, the latest data is usually updated within 2-3 days after the latest Copernicus data is published.

When you see your ordered data first time, you would recognize that the data does not contain the whole data. This is NOT a bug but the data creation process has not done yet. After the order, the process begins, and then the whole data becomes accessible in several hours. In every 15 minutes, the data is revised in the direction of both the future and in the past.

Data Format

The default format is csv where no single/double quotation marks are used in the file. Also, the geojson format is available, changing the file extension in the provided url from “csv” to “geojson.” Note that the geometry of geojson format is Point.

Example (DVS)

Example on Spreadsheet.

Column Names / Property Names

NamesDescriptionPhysical unit / classesPhysical minPhysical maxDigital maxScalingOffset
timeDatetimeYYYY-MM-10 12:00:00
latLatitudeDecimal
lonLongitudeDecimal
WinterWheatDVSCrop phenological stage: 0 at emergence, 1.0 at flowering, 2.0 at crop maturity02
WinterWheatTAGPTotal above-ground production (dry matter)kg/ha
WinterWheatTWSOTotal weight storage organs (dry matter), e.g. grains or podskg/ha
Based on the provided information on Crop Productivity Indicators: Product User Guide and Specification (PUGS), This table is created by Otani & Co., Inc.

Further Details on Winter Wheat Data

For further details, concerns such as satellite sensors and data accuracy, please refer the Copernicus pages and the ECMWF pages.

Crop productivity and evapotranspiration indicators from 2000 to present derived from satellite observations

Crop Productivity Indicators: Product User Guide and Specification (PUGS)

Wet rice data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) / Copernicus

Our data for Wet rice data of Development Stage (DVS), Total Above-Ground Production (TAGS) and Total Weight Storage Organs (TWSO) is based on the data from Copernicus project in Europe. This page purposes to explain detailed information for the downloadable data.

Example Dataset (DVS)

Please download a free example dataset and use it in you app or analysis.

URL Expiration

All downloadable URLs expire in 90 days after your order.

Temporal Resolution and Update

The temporal resolution for this data is 10-daily. Also, the latest data is usually updated within 2-3 days after the latest Copernicus data is published.

When you see your ordered data first time, you would recognize that the data does not contain the whole data. This is NOT a bug but the data creation process has not done yet. After the order, the process begins, and then the whole data becomes accessible in several hours. In every 15 minutes, the data is revised in the direction of both the future and in the past.

Data Format

The default format is csv where no single/double quotation marks are used in the file. Also, the geojson format is available, changing the file extension in the provided url from “csv” to “geojson.” Note that the geometry of geojson format is Point.

Example (DVS)

Example on Spreadsheet.

Column Names / Property Names

NamesDescriptionPhysical unit / classesPhysical minPhysical maxDigital maxScalingOffset
timeDatetimeYYYY-MM-10 12:00:00
latLatitudeDecimal
lonLongitudeDecimal
WetRiceDVSCrop phenological stage: 0 at emergence, 1.0 at flowering, 2.0 at crop maturity02
WetRiceTAGPTotal above-ground production (dry matter)kg/ha
WetRiceTWSOTotal weight storage organs (dry matter), e.g. grains or podskg/ha
Based on the provided information on Crop Productivity Indicators: Product User Guide and Specification (PUGS), This table is created by Otani & Co., Inc.

Further Details on Wet Rice Data

For further details, concerns such as satellite sensors and data accuracy, please refer the Copernicus pages and the ECMWF pages.

Crop productivity and evapotranspiration indicators from 2000 to present derived from satellite observations

Crop Productivity Indicators: Product User Guide and Specification (PUGS)